tf.nn.rnn_cell.OutputProjectionWrapper.__call__()

tf.nn.rnn_cell.OutputProjectionWrapper.__call__(inputs, state, scope=None) Run the cell and output projection on inputs, starting from state.

tf.nn.rnn_cell.LSTMStateTuple.__getstate__()

tf.nn.rnn_cell.LSTMStateTuple.__getstate__() Exclude the OrderedDict from pickling

tf.nn.rnn_cell.InputProjectionWrapper.output_size

tf.nn.rnn_cell.InputProjectionWrapper.output_size

tf.nn.rnn_cell.BasicRNNCell.output_size

tf.nn.rnn_cell.BasicRNNCell.output_size

tf.listdiff()

tf.listdiff(x, y, out_idx=None, name=None) Computes the difference between two lists of numbers or strings. Given a list x and a list y, this operation returns a list out that represents all values that are in x but not in y. The returned list out is sorted in the same order that the numbers appear in x (duplicates are preserved). This operation also returns a list idx that represents the position of each out element in x. In other words: out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1] F

tf.nn.rnn_cell.GRUCell

class tf.nn.rnn_cell.GRUCell Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078).

tf.errors.InvalidArgumentError

class tf.errors.InvalidArgumentError Raised when an operation receives an invalid argument. This may occur, for example, if an operation is receives an input tensor that has an invalid value or shape. For example, the tf.matmul() op will raise this error if it receives an input that is not a matrix, and the tf.reshape() op will raise this error if the new shape does not match the number of elements in the input tensor.

tf.cumprod()

tf.cumprod(x, axis=0, exclusive=False, reverse=False, name=None) Compute the cumulative product of the tensor x along axis. By default, this op performs an inclusive cumprod, which means that the first element of the input is identical to the first element of the output: prettyprint tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c] By setting the exclusive kwarg to True, an exclusive cumprod is performed instead: prettyprint tf.cumprod([a, b, c], exclusive=True) ==> [0, a, a * b] By settin

tf.contrib.framework.add_model_variable()

tf.contrib.framework.add_model_variable(var) Adds a variable to the GraphKeys.MODEL_VARIABLES collection. Args: var: a variable.

tf.contrib.learn.monitors.SummaryWriterCache.get()

tf.contrib.learn.monitors.SummaryWriterCache.get(logdir) Returns the SummaryWriter for the specified directory. Args: logdir: str, name of the directory. Returns: A SummaryWriter.