tf.contrib.learn.monitors.EveryN.set_estimator()

tf.contrib.learn.monitors.EveryN.set_estimator(estimator) A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None.

tf.contrib.distributions.Mixture.pmf()

tf.contrib.distributions.Mixture.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.learn.monitors.ExportMonitor.signature_fn

tf.contrib.learn.monitors.ExportMonitor.signature_fn

tf.contrib.distributions.Uniform.mean()

tf.contrib.distributions.Uniform.mean(name='mean') Mean.

tf.contrib.learn.LinearRegressor.fit()

tf.contrib.learn.LinearRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) See Trainable. Raises: ValueError: If x or y are not None while input_fn is not None. ValueError: If both steps and max_steps are not None.

tf.random_uniform()

tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None) Outputs random values from a uniform distribution. The generated values follow a uniform distribution in the range [minval, maxval). The lower bound minval is included in the range, while the upper bound maxval is excluded. For floats, the default range is [0, 1). For ints, at least maxval must be specified explicitly. In the integer case, the random integers are slightly biased unless maxval - minval is an

tf.python_io.TFRecordWriter.write()

tf.python_io.TFRecordWriter.write(record) Write a string record to the file. Args: record: str

tf.contrib.distributions.Exponential.event_shape()

tf.contrib.distributions.Exponential.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.learn.Estimator.fit()

tf.contrib.learn.Estimator.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) See Trainable. Raises: ValueError: If x or y are not None while input_fn is not None. ValueError: If both steps and max_steps are not None.

tf.contrib.learn.Estimator.get_variable_names()

tf.contrib.learn.Estimator.get_variable_names() Returns list of all variable names in this model. Returns: List of names.