tf.contrib.distributions.StudentT.pmf()

tf.contrib.distributions.StudentT.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.get_event_shape()

tf.contrib.distributions.MultivariateNormalDiag.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.QueueBase.queue_ref

tf.QueueBase.queue_ref The underlying queue reference.

tf.contrib.distributions.InverseGamma.is_continuous

tf.contrib.distributions.InverseGamma.is_continuous

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value()

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value(name='value')

tf.contrib.distributions.Poisson.std()

tf.contrib.distributions.Poisson.std(name='std') Standard deviation.

tf.contrib.distributions.Binomial.allow_nan_stats

tf.contrib.distributions.Binomial.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is

tf.InteractiveSession.__init__()

tf.InteractiveSession.__init__(target='', graph=None, config=None) Creates a new interactive TensorFlow session. If no graph argument is specified when constructing the session, the default graph will be launched in the session. If you are using more than one graph (created with tf.Graph() in the same process, you will have to use different sessions for each graph, but each graph can be used in multiple sessions. In this case, it is often clearer to pass the graph to be launched explicitly to

tf.contrib.distributions.ExponentialWithSoftplusLam.entropy()

tf.contrib.distributions.ExponentialWithSoftplusLam.entropy(name='entropy') Shanon entropy in nats. Additional documentation from Gamma: This is defined to be entropy = alpha - log(beta) + log(Gamma(alpha)) + (1-alpha)digamma(alpha) where digamma(alpha) is the digamma function.

tf.contrib.distributions.Categorical.param_static_shapes()

tf.contrib.distributions.Categorical.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.