tf.contrib.learn.DNNClassifier.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) See trainable.Trainable.
tf.contrib.learn.DNNClassifier.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None) See BaseEstimator.export.
tf.contrib.learn.DNNClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See evaluable.Evaluable.
tf.contrib.learn.DNNClassifier.config
tf.contrib.learn.DNNClassifier.bias_ DEPRECATED FUNCTION THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-13. Instructions for updating: This method inspects the private state of the object, and should not be used
class tf.contrib.learn.DNNClassifier A classifier for TensorFlow DNN models. Example: education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb =
tf.contrib.learn.BaseEstimator.__repr__()
tf.contrib.learn.BaseEstimator.__init__(model_dir=None, config=None) Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: A RunConfig instance.
tf.contrib.learn.BaseEstimator.set_params(**params) Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names.
tf.contrib.learn.BaseEstimator.predict(*args, **kwargs) Returns predictions for given features. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15. Instructions for updating: The default behavior of predict() is changing. The default value for as_iterable will change to True, and then the flag will be removed altogether. The behavior of this flag is described below. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns
Page 115 of 319