tf.contrib.distributions.Multinomial.cdf()

tf.contrib.distributions.Multinomial.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Multinomial.batch_shape()

tf.contrib.distributions.Multinomial.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.Multinomial.allow_nan_stats

tf.contrib.distributions.Multinomial.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1

tf.contrib.distributions.Multinomial

class tf.contrib.distributions.Multinomial Multinomial distribution. This distribution is parameterized by a vector p of probability parameters for k classes and n, the counts per each class..

tf.contrib.distributions.Mixture.__init__()

tf.contrib.distributions.Mixture.__init__(cat, components, validate_args=False, allow_nan_stats=True, name='Mixture') Initialize a Mixture distribution. A Mixture is defined by a Categorical (cat, representing the mixture probabilities) and a list of Distribution objects all having matching dtype, batch shape, event shape, and continuity properties (the components). The num_classes of cat must be possible to infer at graph construction time and match len(components). Args: cat: A Categorical

tf.contrib.distributions.Mixture.variance()

tf.contrib.distributions.Mixture.variance(name='variance') Variance.

tf.contrib.distributions.Mixture.validate_args

tf.contrib.distributions.Mixture.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Mixture.survival_function()

tf.contrib.distributions.Mixture.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Mixture.std()

tf.contrib.distributions.Mixture.std(name='std') Standard deviation.

tf.contrib.distributions.Mixture.sample_n()

tf.contrib.distributions.Mixture.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.