tf.contrib.distributions.Binomial.log_prob()

tf.contrib.distributions.Binomial.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from Binomial: For each batch member of counts value, P[counts] is the probability that after sampling n draws from this Binomial distribution, the number of successes is k. Note that different sequences of draws can result in the same counts, thus the probability includes a combinatorial coefficient. value must be a non-negative tensor

tf.contrib.distributions.Binomial.log_pmf()

tf.contrib.distributions.Binomial.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.Binomial.log_pdf()

tf.contrib.distributions.Binomial.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.Binomial.log_cdf()

tf.contrib.distributions.Binomial.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_shape(x) + self

tf.contrib.distributions.Binomial.logits

tf.contrib.distributions.Binomial.logits Log-odds.

tf.contrib.distributions.Binomial.is_reparameterized

tf.contrib.distributions.Binomial.is_reparameterized

tf.contrib.distributions.Binomial.is_continuous

tf.contrib.distributions.Binomial.is_continuous

tf.contrib.distributions.Binomial.get_event_shape()

tf.contrib.distributions.Binomial.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Binomial.get_batch_shape()

tf.contrib.distributions.Binomial.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Binomial.event_shape()

tf.contrib.distributions.Binomial.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.