tf.TensorArray.read()

tf.TensorArray.read(index, name=None) Read the value at location index in the TensorArray. Args: index: 0-D. int32 tensor with the index to read from. name: A name for the operation (optional). Returns: The tensor at index index.

tf.TensorArray.pack()

tf.TensorArray.pack(name=None) Return the values in the TensorArray as a packed Tensor. All of the values must have been written and their shapes must all match. Args: name: A name for the operation (optional). Returns: All the tensors in the TensorArray packed into one tensor.

tf.TensorArray.handle

tf.TensorArray.handle The reference to the TensorArray.

tf.TensorArray.grad()

tf.TensorArray.grad(source, flow=None, name=None)

tf.TensorArray.gather()

tf.TensorArray.gather(indices, name=None) Return selected values in the TensorArray as a packed Tensor. All of selected values must have been written and their shapes must all match. Args: indices: A 1-D Tensor taking values in [0, max_value). If the TensorArray is not dynamic, max_value=size(). name: A name for the operation (optional). Returns: The in the TensorArray selected by indices, packed into one tensor.

tf.TensorArray.flow

tf.TensorArray.flow The flow Tensor forcing ops leading to this TensorArray state.

tf.TensorArray.dtype

tf.TensorArray.dtype The data type of this TensorArray.

tf.TensorArray.concat()

tf.TensorArray.concat(name=None) Return the values in the TensorArray as a concatenated Tensor. All of the values must have been written, their ranks must match, and and their shapes must all match for all dimensions except the first. Args: name: A name for the operation (optional). Returns: All the tensors in the TensorArray concatenated into one tensor.

tf.TensorArray.close()

tf.TensorArray.close(name=None) Close the current TensorArray.

tf.TensorArray

class tf.TensorArray Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays. This class is meant to be used with dynamic iteration primitives such as while_loop and map_fn. It supports gradient back-propagation via special "flow" control flow dependencies.