tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.mean(name='mean')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.loss(final_loss, name='Loss')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.graph

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.graph

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.clone(name=None, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor

class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor MultivariateNormalDiagTensor is a StochasticTensor backed by the distribution MultivariateNormalDiag.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)