fann_get_cascade_max_cand_epochs

(PECL fann >= 1.0.0) Returns the maximum candidate epochs int fann_get_cascade_max_cand_epochs ( resource $ann ) The maximum candidate epochs determines the maximum number of epochs the input connections to the candidates may be trained before adding a new candidate neuron. The default max candidate epochs is 150. Parameters: ann Neural network resource.

fann_get_cascade_candidate_stagnation_epochs

(PECL fann >= 1.0.0) Returns the number of cascade candidate stagnation epochs float fann_get_cascade_candidate_stagnation_epochs ( resource $ann ) The number of cascade candidate stagnation epochs determines the number of epochs training is allowed to continue without changing the MSE by a fraction of fann_get_cascade_candidate_change_fraction(). See more info about this parameter in fann_get_cascade_candidate_change_f

fann_get_cascade_candidate_limit

(PECL fann >= 1.0.0) Return the candidate limit float fann_get_cascade_candidate_limit ( resource $ann ) The candidate limit is a limit for how much the candidate neuron may be trained. The limit is a limit on the proportion between the MSE and candidate score. Set this to a lower value to avoid overfitting and to a higher if overfitting is not a problem. The default candidate limit is 1000.0. Paramet

fann_get_cascade_candidate_change_fraction

(PECL fann >= 1.0.0) Returns the cascade candidate change fraction float fann_get_cascade_candidate_change_fraction ( resource $ann ) The cascade candidate change fraction is a number between 0 and 1 determining how large a fraction the fann_get_MSE() value should change within fann_get_cascade_candidate_stagnation_epochs() during training of the candidate neurons, in order for the training not to stagnate. If the trainin

fann_get_cascade_activation_steepnesses

(PECL fann >= 1.0.0) Returns the cascade activation steepnesses array fann_get_cascade_activation_steepnesses ( resource $ann ) The cascade activation steepnesses array is an array of the different activation functions used by the candidates. See fann_get_cascade_num_candidates() for a description of which candidate neurons will be generated by this array. The default activation steepnesses are {0.25, 0.50, 0.75, 1.00

fann_get_cascade_activation_steepnesses_count

(PECL fann >= 1.0.0) The number of activation steepnesses int fann_get_cascade_activation_steepnesses_count ( resource $ann ) The number of activation steepnesses in the fann_get_cascade_activation_functions() array. The default number of activation steepnesses is 4. Parameters: ann Neural network resource. Returns: The number of activation st

fann_get_cascade_activation_functions

(PECL fann >= 1.0.0) Returns the cascade activation functions array fann_get_cascade_activation_functions ( resource $ann ) The cascade activation functions array is an array of the different activation functions used by the candidates See fann_get_cascade_num_candidates() for a description of which candidate neurons will be generated by this array. The default activation functions are FANN_SIGMOID, FANN_SIGMOID_SYMME

fann_get_cascade_activation_functions_count

(PECL fann >= 1.0.0) Returns the number of cascade activation functions int fann_get_cascade_activation_functions_count ( resource $ann ) The number of activation functions in the fann_get_cascade_activation_functions() array. The default number of activation functions is 6. Parameters: ann Neural network resource. Returns: The number of casca

fann_get_bit_fail

(PECL fann >= 1.0.0) The number of fail bits int fann_get_bit_fail ( resource $ann ) The number of fail bits; means the number of output neurons which differ more than the bit fail limit (see fann_get_bit_fail_limit(), fann_set_bit_fail_limit()). The bits are counted in all of the training data, so this number can be higher than the number of training data. This value is reset by fann_reset_MSE() and updated by all the

fann_get_bit_fail_limit

(PECL fann >= 1.0.0) Returns the bit fail limit used during training float fann_get_bit_fail_limit ( resource $ann ) Returns the bit fail limit used during training. The bit fail limit is used during training where the stop function is set to FANN_STOPFUNC_BIT. The limit is the maximum accepted difference between the desired output and the actual output during training. Each output that diverges more than this limit i