sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1) [source]
Compute the polynomial kernel between X and Y: K(X, Y) = (gamma <X, Y> + coef0)^degree
Read more in the User Guide. Parameters:
X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) degree : int, default 3 gamma : float, default None if None, defaults to 1.0 / n_samples_1 coef0 : int, default 1 Returns:
Gram matrix : array of shape (n_samples_1, n