class sklearn.decomposition.KernelPCA(n_components=None, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver='auto', tol=0, max_iter=None, remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=1) [source]
Kernel Principal component analysis (KPCA) Non-linear dimensionality reduction through the use of kernels (see Pairwise metrics, Affinities and Kernels). Read more in the User Guide. Parameters:
n_components : in