sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True) [source]
Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the User Guide. Parameters:
X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array,