sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None) [source]
Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as: X ~ N(0, 1)
y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]
Only the first 4 features are informative. The remaining features are useless. Read more in the User Guide. Parameters:
n_samples : int, optional (default=100) The number of samples. n_features : int,