sklearn.decomposition.dict_learning(X, n_components, alpha, max_iter=100, tol=1e-08, method='lars', n_jobs=1, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False) [source]
Solves a dictionary learning matrix factorization problem. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||