class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init=3, reassignment_ratio=0.01) [source]
Mini-Batch K-Means clustering Read more in the User Guide. Parameters:
n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional Maximum number of iterations over