RandomState.standard_gamma()

RandomState.standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated ?k?) and scale=1. Parameters: shape : float Parameter, should be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned. Returns: samples : ndarray or scalar

numpy.polynomial.legendre.poly2leg()

numpy.polynomial.legendre.poly2leg(pol) [source] Convert a polynomial to a Legendre series. Convert an array representing the coefficients of a polynomial (relative to the ?standard? basis) ordered from lowest degree to highest, to an array of the coefficients of the equivalent Legendre series, ordered from lowest to highest degree. Parameters: pol : array_like 1-D array containing the polynomial coefficients Returns: c : ndarray 1-D array containing the coefficients of the equivalent

numpy.sum()

numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False) [source] Sum of array elements over a given axis. Parameters: a : array_like Elements to sum. axis : None or int or tuple of ints, optional Axis or axes along which a sum is performed. The default, axis=None, will sum all of the elements of the input array. If axis is negative it counts from the last to the first axis. New in version 1.7.0. If axis is a tuple of ints, a sum is performed on all of the axes specified in the t

numpy.histogram2d()

numpy.histogram2d(x, y, bins=10, range=None, normed=False, weights=None) [source] Compute the bi-dimensional histogram of two data samples. Parameters: x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: If int, the number of bins for the two dimension

numpy.polynomial.polynomial.polymul()

numpy.polynomial.polynomial.polymul(c1, c2) [source] Multiply one polynomial by another. Returns the product of two polynomials c1 * c2. The arguments are sequences of coefficients, from lowest order term to highest, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2. Parameters: c1, c2 : array_like 1-D arrays of coefficients representing a polynomial, relative to the ?standard? basis, and ordered from lowest order term to highest. Returns: out : ndarray Of the coefficients of t

numpy.core.defchararray.isdigit()

numpy.core.defchararray.isdigit(a) [source] Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise. Calls str.isdigit element-wise. For 8-bit strings, this method is locale-dependent. Parameters: a : array_like of str or unicode Returns: out : ndarray Output array of bools See also str.isdigit

recarray.shape

recarray.shape Tuple of array dimensions. Notes May be used to ?reshape? the array, as long as this would not require a change in the total number of elements Examples >>> x = np.array([1, 2, 3, 4]) >>> x.shape (4,) >>> y = np.zeros((2, 3, 4)) >>> y.shape (2, 3, 4) >>> y.shape = (3, 8) >>> y array([[ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0.]])

ndarray.flatten()

ndarray.flatten(order='C') Return a copy of the array collapsed into one dimension. Parameters: order : {?C?, ?F?, ?A?, ?K?}, optional ?C? means to flatten in row-major (C-style) order. ?F? means to flatten in column-major (Fortran- style) order. ?A? means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ?K? means to flatten a in the order the elements occur in memory. The default is ?C?. Returns: y : ndarray A copy of the input array,

numpy.polynomial.hermite.hermval3d()

numpy.polynomial.hermite.hermval3d(x, y, z, c) [source] Evaluate a 3-D Hermite series at points (x, y, z). This function returns the values: The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements must support multiplication and addition both with themselves and with the elements of c. If c has fewer than 3 dimensi

Legendre.cast()

classmethod Legendre.cast(series, domain=None, window=None) [source] Convert series to series of this class. The series is expected to be an instance of some polynomial series of one of the types supported by by the numpy.polynomial module, but could be some other class that supports the convert method. New in version 1.7.0. Parameters: series : series The series instance to be converted. domain : {None, array_like}, optional If given, the array must be of the form [beg, end], where b