matrix.I

matrix.I Returns the (multiplicative) inverse of invertible self. Parameters: None Returns: ret : matrix object If self is non-singular, ret is such that ret * self == self * ret == np.matrix(np.eye(self[0,:].size) all return True. Raises: numpy.linalg.LinAlgError: Singular matrix If self is singular. See also linalg.inv Examples >>> m = np.matrix('[1, 2; 3, 4]'); m matrix([[1, 2], [3, 4]]) >>> m.getI() matrix([[-2. , 1. ], [ 1.5, -0.5]]) >&

matrix.H

matrix.H Returns the (complex) conjugate transpose of self. Equivalent to np.transpose(self) if self is real-valued. Parameters: None Returns: ret : matrix object complex conjugate transpose of self Examples >>> x = np.matrix(np.arange(12).reshape((3,4))) >>> z = x - 1j*x; z matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j], [ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j], [ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]]) >>> z.getH() matrix([[

matrix.getT()

matrix.getT() [source] Returns the transpose of the matrix. Does not conjugate! For the complex conjugate transpose, use .H. Parameters: None Returns: ret : matrix object The (non-conjugated) transpose of the matrix. See also transpose, getH Examples >>> m = np.matrix('[1, 2; 3, 4]') >>> m matrix([[1, 2], [3, 4]]) >>> m.getT() matrix([[1, 3], [2, 4]])

matrix.getfield()

matrix.getfield(dtype, offset=0) Returns a field of the given array as a certain type. A field is a view of the array data with a given data-type. The values in the view are determined by the given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes. Parameters:

matrix.getI()

matrix.getI() [source] Returns the (multiplicative) inverse of invertible self. Parameters: None Returns: ret : matrix object If self is non-singular, ret is such that ret * self == self * ret == np.matrix(np.eye(self[0,:].size) all return True. Raises: numpy.linalg.LinAlgError: Singular matrix If self is singular. See also linalg.inv Examples >>> m = np.matrix('[1, 2; 3, 4]'); m matrix([[1, 2], [3, 4]]) >>> m.getI() matrix([[-2. , 1. ], [ 1.5,

matrix.getH()

matrix.getH() [source] Returns the (complex) conjugate transpose of self. Equivalent to np.transpose(self) if self is real-valued. Parameters: None Returns: ret : matrix object complex conjugate transpose of self Examples >>> x = np.matrix(np.arange(12).reshape((3,4))) >>> z = x - 1j*x; z matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j], [ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j], [ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]]) >>> z.get

matrix.flatten()

matrix.flatten(order='C') [source] Return a flattened copy of the matrix. All N elements of the matrix are placed into a single row. Parameters: order : {?C?, ?F?, ?A?, ?K?}, optional ?C? means to flatten in row-major (C-style) order. ?F? means to flatten in column-major (Fortran-style) order. ?A? means to flatten in column-major order if m is Fortran contiguous in memory, row-major order otherwise. ?K? means to flatten m in the order the elements occur in memory. The default is ?C?. Re

matrix.getA()

matrix.getA() [source] Return self as an ndarray object. Equivalent to np.asarray(self). Parameters: None Returns: ret : ndarray self as an ndarray Examples >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.getA() array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])

matrix.getA1()

matrix.getA1() [source] Return self as a flattened ndarray. Equivalent to np.asarray(x).ravel() Parameters: None Returns: ret : ndarray self, 1-D, as an ndarray Examples >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.getA1() array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

matrix.flags

matrix.flags Information about the memory layout of the array. Notes The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access. Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags. The array flags cannot be set arbitrarily: UPDATEIF