ndarray.__long__()

ndarray.__long__() <==> long(x)

numpy.ma.dstack()

numpy.ma.dstack(tup) = Stack arrays in sequence depth wise (along third axis). Takes a sequence of arrays and stack them along the third axis to make a single array. Rebuilds arrays divided by dsplit. This is a simple way to stack 2D arrays (images) into a single 3D array for processing. Parameters: tup : sequence of arrays Arrays to stack. All of them must have the same shape along all but the third axis. Returns: stacked : ndarray The array formed by stacking the given arrays.

numpy.linalg.lstsq()

numpy.linalg.lstsq(a, b, rcond=-1) [source] Return the least-squares solution to a linear matrix equation. Solves the equation a x = b by computing a vector x that minimizes the Euclidean 2-norm || b - a x ||^2. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the ?exact? soluti

numpy.random.noncentral_f()

numpy.random.noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter. Parameters: dfnum : int Parameter, should be > 1. dfden : int Parameter, should be > 1. nonc : float Parameter, should be >= 0. size : int or tuple of

generic.__array_struct__

generic.__array_struct__ Array protocol: struct

numpy.random.RandomState

class numpy.random.RandomState Container for the Mersenne Twister pseudo-random number generator. RandomState exposes a number of methods for generating random numbers drawn from a variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword argument size that defaults to None. If size is None, then a single value is generated and returned. If size is an integer, then a 1-D array filled with generated values is returned. If size is a

numpy.polynomial.laguerre.laggrid2d()

numpy.polynomial.laguerre.laggrid2d(x, y, c) [source] Evaluate a 2-D Laguerre series on the Cartesian product of x and y. This function returns the values: where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a grid with x in the first dimension and y in the second. The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars. In either case, either x and y or their ele

The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number of dimensions and items in an array is defined by its shape, which is a tuple of N positive integers that specify the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of which is associated with each ndarray. As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or

RandomState.f()

RandomState.f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and dfden (degrees of freedom in denominator), where both parameters should be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters: dfnum

numpy.errstate()

class numpy.errstate(**kwargs) [source] Context manager for floating-point error handling. Using an instance of errstate as a context manager allows statements in that context to execute with a known error handling behavior. Upon entering the context the error handling is set with seterr and seterrcall, and upon exiting it is reset to what it was before. Parameters: kwargs : {divide, over, under, invalid} Keyword arguments. The valid keywords are the possible floating-point exceptions. Ea