MaskedArray.__or__

MaskedArray.__or__ x.__or__(y) <==> x|y

numpy.testing.assert_raises_regex()

numpy.testing.assert_raises_regex(exception_class, expected_regexp, callable_obj=None, *args, **kwargs) [source] Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by callable when invoked with arguments args and keyword arguments kwargs. Name of this function adheres to Python 3.2+ reference, but should work in all versions down to 2.6.

generic.T

generic.T transpose

MaskedArray.__rdivmod__()

MaskedArray.__rdivmod__(y) <==> divmod(y, x)

numpy.arccos()

numpy.arccos(x[, out]) = Trigonometric inverse cosine, element-wise. The inverse of cos so that, if y = cos(x), then x = arccos(y). Parameters: x : array_like x-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional Array of the same shape as a, to store results in. See doc.ufuncs (Section ?Output arguments?) for more details. Returns: angle : ndarray The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0

numpy.polynomial.polynomial.polyfromroots()

numpy.polynomial.polynomial.polyfromroots(roots) [source] Generate a monic polynomial with given roots. Return the coefficients of the polynomial where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The roots can appear in any order. If the returned coefficients are c, then The coefficient

numpy.ma.std()

numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0) = Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Parameters: a : array_like Calculate the standard deviation of these values. axis : None or int or tuple of ints, optional Axis or axes along which the standard deviat

nditer.iternext()

nditer.iternext() Check whether iterations are left, and perform a single internal iteration without returning the result. Used in the C-style pattern do-while pattern. For an example, see nditer. Returns: iternext : bool Whether or not there are iterations left.

MaskedArray.take()

MaskedArray.take(indices, axis=None, out=None, mode='raise') [source]

record.argmin()

record.argmin() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes of the ndarray class so as to provide a uniform API. See also The