numpy.fromregex()

numpy.fromregex(file, regexp, dtype) [source] Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters: file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression corr

numpy.polynomial.legendre.legvander()

numpy.polynomial.legendre.legvander(x, deg) [source] Pseudo-Vandermonde matrix of given degree. Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is defined by where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the Legendre polynomial. If c is a 1-D array of coefficients of length n + 1 and V is the array V = legvander(x, n), then np.dot(V, c) and legval(x, c) are the same up

MaskedArray.set_fill_value()

MaskedArray.set_fill_value(value=None) [source] Set the filling value of the masked array. Parameters: value : scalar, optional The new filling value. Default is None, in which case a default based on the data type is used. See also ma.set_fill_value Equivalent function. Examples >>> x = np.ma.array([0, 1.], fill_value=-np.inf) >>> x.fill_value -inf >>> x.set_fill_value(np.pi) >>> x.fill_value 3.1415926535897931 Reset to default: >>> x.s

MaskedArray.__deepcopy__()

MaskedArray.__deepcopy__(memo=None) [source]

ndarray.__reduce__()

ndarray.__reduce__() For pickling.

numpy.ascontiguousarray()

numpy.ascontiguousarray(a, dtype=None) [source] Return a contiguous array in memory (C order). Parameters: a : array_like Input array. dtype : str or dtype object, optional Data-type of returned array. Returns: out : ndarray Contiguous array of same shape and content as a, with type dtype if specified. See also asfortranarray Convert input to an ndarray with column-major memory order. require Return an ndarray that satisfies requirements. ndarray.flags Information about

numpy.polynomial.legendre.legdiv()

numpy.polynomial.legendre.legdiv(c1, c2) [source] Divide one Legendre series by another. Returns the quotient-with-remainder of two Legendre series c1 / c2. The arguments are sequences of coefficients from lowest order ?term? to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2. Parameters: c1, c2 : array_like 1-D arrays of Legendre series coefficients ordered from low to high. Returns: quo, rem : ndarrays Of Legendre series coefficients representing the quotient and re

Hermite.has_samedomain()

Hermite.has_samedomain(other) [source] Check if domains match. New in version 1.6.0. Parameters: other : class instance The other class must have the domain attribute. Returns: bool : boolean True if the domains are the same, False otherwise.

Hermite.has_samecoef()

Hermite.has_samecoef(other) [source] Check if coefficients match. New in version 1.6.0. Parameters: other : class instance The other class must have the coef attribute. Returns: bool : boolean True if the coefficients are the same, False otherwise.

MaskedArray.put()

MaskedArray.put(indices, values, mode='raise') [source] Set storage-indexed locations to corresponding values. Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat. If values has some masked values, the initial mask is updated in consequence, else the corresponding values are unmasked. Parameters: indices : 1-D array_like Target indices, interpreted as integers. values : array_like Values to place in self._data copy at target i