dtype.isbuiltin

dtype.isbuiltin Integer indicating how this dtype relates to the built-in dtypes. Read-only. 0 if this is a structured array type, with fields 1 if this is a dtype compiled into numpy (such as ints, floats etc) 2 if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to extend numpy to handle a new array type. See User-defined data-types in the Numpy manual. Examples >>> dt = np.dtype('i2') >>> dt.isbuiltin 1 >>> dt = np.d

dtype.isalignedstruct

dtype.isalignedstruct Boolean indicating whether the dtype is a struct which maintains field alignment. This flag is sticky, so when combining multiple structs together, it is preserved and produces new dtypes which are also aligned.

dtype.descr

dtype.descr Array-interface compliant full description of the data-type. The format is that required by the ?descr? key in the __array_interface__ attribute.

dtype.flags

dtype.flags Bit-flags describing how this data type is to be interpreted. Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE, ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of these flags is in C-API documentation; they are largely useful for user-defined data-types.

dtype.fields

dtype.fields Dictionary of named fields defined for this data type, or None. The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully describing the field: (dtype, offset[, title]) If present, the optional title can be any object (if it is a string or unicode then it will also be a key in the fields dictionary, otherwise it?s meta-data). Notice also that the first two elements of the tuple can be passed directly as arguments to the n

dtype.char

dtype.char A unique character code for each of the 21 different built-in types.

dtype.byteorder

dtype.byteorder A character indicating the byte-order of this data-type object. One of: ?=? native ?<? little-endian ?>? big-endian ?|? not applicable All built-in data-type objects have byteorder either ?=? or ?|?. Examples >>> dt = np.dtype('i2') >>> dt.byteorder '=' >>> # endian is not relevant for 8 bit numbers >>> np.dtype('i1').byteorder '|' >>> # or ASCII strings >>> np.dtype('S2').byteorder '|' >>> # Even if specif

dtype.base

dtype.base

Discrete Fourier Transform (numpy.fft)

Standard FFTs fft(a[, n, axis, norm]) Compute the one-dimensional discrete Fourier Transform. ifft(a[, n, axis, norm]) Compute the one-dimensional inverse discrete Fourier Transform. fft2(a[, s, axes, norm]) Compute the 2-dimensional discrete Fourier Transform ifft2(a[, s, axes, norm]) Compute the 2-dimensional inverse discrete Fourier Transform. fftn(a[, s, axes, norm]) Compute the N-dimensional discrete Fourier Transform. ifftn(a[, s, axes, norm]) Compute the N-dimensional inverse dis

dtype.alignment

dtype.alignment The required alignment (bytes) of this data-type according to the compiler. More information is available in the C-API section of the manual.