RandomState.normal()

RandomState.normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [R179], is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a

RandomState.pareto()

RandomState.pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the standard Pareto distribution has location mu = 1. Lomax c

RandomState.noncentral_f()

RandomState.noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter. Parameters: dfnum : int Parameter, should be > 1. dfden : int Parameter, should be > 1. nonc : float Parameter, should be >= 0. size : int or tuple of

RandomState.noncentral_chisquare()

RandomState.noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral distribution is a generalisation of the distribution. Parameters: df : int Degrees of freedom, should be > 0 as of Numpy 1.10, should be > 1 for earlier versions. nonc : float Non-centrality, should be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is Non

RandomState.negative_binomial()

RandomState.negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, n trials and p probability of success where n is an integer > 0 and p is in the interval [0, 1]. Parameters: n : int Parameter, > 0. p : float Parameter, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. D

RandomState.multivariate_normal()

RandomState.multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or ?center?) and variance (standard deviation, or ?width,? squared) of the one-dimensional normal distribution. Para

RandomState.multinomial()

RandomState.multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experiment with one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_i = [X_0, X_1, ..., X_p], represent the number of times the outcome was i. Parameter

RandomState.logseries()

RandomState.logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < p < 1. Parameters: loc : float scale : float > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned. Returns: samples : ndarray or scalar where the values are all integers

RandomState.lognormal()

RandomState.lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters: mean : float Mean value of the underlying normal distribution sigma : float, > 0. Standard deviation of the underlying norm

RandomState.laplace()

RandomState.laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters: loc : float, optional The position, , of the distribution peak. scale : float, op