generic.repeat()

generic.repeat() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes of the ndarray class so as to provide a uniform API. See also The

numpy.polynomial.laguerre.laggrid2d()

numpy.polynomial.laguerre.laggrid2d(x, y, c) [source] Evaluate a 2-D Laguerre series on the Cartesian product of x and y. This function returns the values: where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a grid with x in the first dimension and y in the second. The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars. In either case, either x and y or their ele

record.ptp()

record.ptp() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes of the ndarray class so as to provide a uniform API. See also The

matrix.dumps()

matrix.dumps() Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array. Parameters: None

numpy.pad()

numpy.pad(array, pad_width, mode, **kwargs) [source] Pads an array. Parameters: array : array_like of rank N Input array pad_width : {sequence, array_like, int} Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. mode : str or function One of the following string values

numpy.random.RandomState

class numpy.random.RandomState Container for the Mersenne Twister pseudo-random number generator. RandomState exposes a number of methods for generating random numbers drawn from a variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword argument size that defaults to None. If size is None, then a single value is generated and returned. If size is an integer, then a 1-D array filled with generated values is returned. If size is a

numpy.triu_indices_from()

numpy.triu_indices_from(arr, k=0) [source] Return the indices for the upper-triangle of arr. See triu_indices for full details. Parameters: arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see triu for details). Returns: triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of arr. See also triu_indices, triu Notes New in version 1.4.0.

dtype.type

dtype.type The type object used to instantiate a scalar of this data-type.

numpy.random.noncentral_f()

numpy.random.noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter. Parameters: dfnum : int Parameter, should be > 1. dfden : int Parameter, should be > 1. nonc : float Parameter, should be >= 0. size : int or tuple of

generic.__array_struct__

generic.__array_struct__ Array protocol: struct