numpy.ma.asanyarray()

numpy.ma.asanyarray(a, dtype=None) [source] Convert the input to a masked array, conserving subclasses. If a is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an ndarray. Parameters: a : array_like Input data, in any form that can be converted to an array. dtype : dtype, optional By default, the data-type is inferred from the input data. order : {?C?, ?F?}, optional Whether to use row-major (?C?) or column-major (?FORTRAN?) memory repre

numpy.ma.around

numpy.ma.around = Round an array to the given number of decimals. Refer to around for full documentation. See also around equivalent function

numpy.ma.argsort()

numpy.ma.argsort(a, axis=None, kind='quicksort', order=None, fill_value=None) [source] Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to fill_value. Parameters: axis : int, optional Axis along which to sort. The default is -1 (last axis). If None, the flattened array is used. fill_value : var, optional Value used to fill the array before sorting. The default is the fill_value attribute of the input array. kind : {?quicksor

numpy.ma.array()

numpy.ma.array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0) [source] An array class with possibly masked values. Masked values of True exclude the corresponding element from any computation. Construction: x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None) Parameters

numpy.ma.argmax()

numpy.ma.argmax(a, axis=None, fill_value=None) [source] Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the value fill_value. Parameters: axis : {None, integer} If None, the index is into the flattened array, otherwise along the specified axis fill_value : {var}, optional Value used to fill in the masked values. If None, the output of maximum_fill_value(self._data) is used instead. out : {None, array}, optional Array into w

numpy.ma.argmin()

numpy.ma.argmin(a, axis=None, fill_value=None) [source] Return array of indices to the minimum values along the given axis. Parameters: axis : {None, integer} If None, the index is into the flattened array, otherwise along the specified axis fill_value : {var}, optional Value used to fill in the masked values. If None, the output of minimum_fill_value(self._data) is used instead. out : {None, array}, optional Array into which the result can be placed. Its type is preserved and it must

numpy.ma.append()

numpy.ma.append(a, b, axis=None) [source] Append values to the end of an array. New in version 1.9.0. Parameters: a : array_like Values are appended to a copy of this array. b : array_like These values are appended to a copy of a. It must be of the correct shape (the same shape as a, excluding axis). If axis is not specified, b can be any shape and will be flattened before use. axis : int, optional The axis along which v are appended. If axis is not given, both a and b are flattened

numpy.ma.arange()

numpy.ma.arange([start, ]stop, [step, ]dtype=None) = Return evenly spaced values within a given interval. Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function, but returns an ndarray rather than a list. When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace for these

numpy.ma.apply_along_axis()

numpy.ma.apply_along_axis(func1d, axis, arr, *args, **kwargs) [source] Apply a function to 1-D slices along the given axis. Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis. Parameters: func1d : function This function should accept 1-D arrays. It is applied to 1-D slices of arr along the specified axis. axis : integer Axis along which arr is sliced. arr : ndarray Input array. args : any Additional arguments to func1d. kwargs: any

numpy.ma.anom()

numpy.ma.anom(self, axis=None, dtype=None) = Compute the anomalies (deviations from the arithmetic mean) along the given axis. Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along the given axis. Parameters: axis : int, optional Axis over which the anomalies are taken. The default is to use the mean of the flattened array as reference. dtype : dtype, optional Type to use in computing the variance. For arrays of integer type th