numpy.ix_()

numpy.ix_(*args) [source] Construct an open mesh from multiple sequences. This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in all but one dimension and the dimension with the non-unit shape value cycles through all N dimensions. Using ix_ one can quickly construct index arrays that will index the cross product. a[np.ix_([1,3],[2,5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]]. Parameters: args : 1-D sequences Returns: ou

numpy.is_busday()

numpy.is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None) Calculates which of the given dates are valid days, and which are not. New in version 1.7.0. Parameters: dates : array_like of datetime64[D] The array of dates to process. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like ?11111

numpy.issubsctype()

numpy.issubsctype(arg1, arg2) [source] Determine if the first argument is a subclass of the second argument. Parameters: arg1, arg2 : dtype or dtype specifier Data-types. Returns: out : bool The result. See also issctype, issubdtype, obj2sctype Examples >>> np.issubsctype('S8', str) True >>> np.issubsctype(np.array([1]), np.int) True >>> np.issubsctype(np.array([1]), np.float) False

numpy.issubclass_()

numpy.issubclass_(arg1, arg2) [source] Determine if a class is a subclass of a second class. issubclass_ is equivalent to the Python built-in issubclass, except that it returns False instead of raising a TypeError if one of the arguments is not a class. Parameters: arg1 : class Input class. True is returned if arg1 is a subclass of arg2. arg2 : class or tuple of classes. Input class. If a tuple of classes, True is returned if arg1 is a subclass of any of the tuple elements. Returns:

numpy.issubdtype()

numpy.issubdtype(arg1, arg2) [source] Returns True if first argument is a typecode lower/equal in type hierarchy. Parameters: arg1, arg2 : dtype_like dtype or string representing a typecode. Returns: out : bool See also issubsctype, issubclass_ numpy.core.numerictypes Overview of numpy type hierarchy. Examples >>> np.issubdtype('S1', str) True >>> np.issubdtype(np.float64, np.float32) False

numpy.issctype()

numpy.issctype(rep) [source] Determines whether the given object represents a scalar data-type. Parameters: rep : any If rep is an instance of a scalar dtype, True is returned. If not, False is returned. Returns: out : bool Boolean result of check whether rep is a scalar dtype. See also issubsctype, issubdtype, obj2sctype, sctype2char Examples >>> np.issctype(np.int32) True >>> np.issctype(list) False >>> np.issctype(1.1) False Strings are also a scalar

numpy.isscalar()

numpy.isscalar(num) [source] Returns True if the type of num is a scalar type. Parameters: num : any Input argument, can be of any type and shape. Returns: val : bool True if num is a scalar type, False if it is not. Examples >>> np.isscalar(3.1) True >>> np.isscalar([3.1]) False >>> np.isscalar(False) True

numpy.isrealobj()

numpy.isrealobj(x) [source] Return True if x is a not complex type or an array of complex numbers. The type of the input is checked, not the value. So even if the input has an imaginary part equal to zero, isrealobj evaluates to False if the data type is complex. Parameters: x : any The input can be of any type and shape. Returns: y : bool The return value, False if x is of a complex type. See also iscomplexobj, isreal Examples >>> np.isrealobj(1) True >>> np.isr

numpy.isreal()

numpy.isreal(x) [source] Returns a bool array, where True if input element is real. If element has complex type with zero complex part, the return value for that element is True. Parameters: x : array_like Input array. Returns: out : ndarray, bool Boolean array of same shape as x. See also iscomplex isrealobj Return True if x is not a complex type. Examples >>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j]) array([False, True, True, True, True, False], dtype=bool)

numpy.isposinf()

numpy.isposinf(x, y=None) [source] Test element-wise for positive infinity, return result as bool array. Parameters: x : array_like The input array. y : array_like, optional A boolean array with the same shape as x to store the result. Returns: y : ndarray A boolean array with the same dimensions as the input. If second argument is not supplied then a boolean array is returned with values True where the corresponding element of the input is positive infinity and values False where t