numpy.polynomial.hermite.hermline()

numpy.polynomial.hermite.hermline(off, scl) [source] Hermite series whose graph is a straight line. Parameters: off, scl : scalars The specified line is given by off + scl*x. Returns: y : ndarray This module?s representation of the Hermite series for off + scl*x. See also polyline, chebline Examples >>> from numpy.polynomial.hermite import hermline, hermval >>> hermval(0,hermline(3, 2)) 3.0 >>> hermval(1,hermline(3, 2)) 5.0

Mathematical functions with automatic domain (numpy.emath)

Note numpy.emath is a preferred alias for numpy.lib.scimath, available after numpy is imported. Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the input data-type in certain domains of the input. For example, for functions like log with branch cuts, the versions in this module provide the mathematically valid answers in the complex plane: >>> import math >>> from numpy.lib import scimath >>> scimat

Random sampling (numpy.random)

Simple random data rand(d0, d1, ..., dn) Random values in a given shape. randn(d0, d1, ..., dn) Return a sample (or samples) from the ?standard normal? distribution. randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (exclusive). random_integers(low[, high, size]) Random integers of type np.int between low and high, inclusive. random_sample([size]) Return random floats in the half-open interval [0.0, 1.0). random([size]) Return random floats in the hal

numpy.ma.append()

numpy.ma.append(a, b, axis=None) [source] Append values to the end of an array. New in version 1.9.0. Parameters: a : array_like Values are appended to a copy of this array. b : array_like These values are appended to a copy of a. It must be of the correct shape (the same shape as a, excluding axis). If axis is not specified, b can be any shape and will be flattened before use. axis : int, optional The axis along which v are appended. If axis is not given, both a and b are flattened

recarray.strides

recarray.strides Tuple of bytes to step in each dimension when traversing an array. The byte offset of element (i[0], i[1], ..., i[n]) in an array a is: offset = sum(np.array(i) * a.strides) A more detailed explanation of strides can be found in the ?ndarray.rst? file in the NumPy reference guide. See also numpy.lib.stride_tricks.as_strided Notes Imagine an array of 32-bit integers (each 4 bytes): x = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], dtype=np.int32) This array

recarray.real

recarray.real The real part of the array. See also numpy.real equivalent function Examples >>> x = np.sqrt([1+0j, 0+1j]) >>> x.real array([ 1. , 0.70710678]) >>> x.real.dtype dtype('float64')

recarray.searchsorted()

recarray.searchsorted(v, side='left', sorter=None) Find indices where elements of v should be inserted in a to maintain order. For full documentation, see numpy.searchsorted See also numpy.searchsorted equivalent function

recarray.dtype

recarray.dtype Data-type of the array?s elements. Parameters: None Returns: d : numpy dtype object See also numpy.dtype Examples >>> x array([[0, 1], [2, 3]]) >>> x.dtype dtype('int32') >>> type(x.dtype) <type 'numpy.dtype'>

numpy.empty_like()

numpy.empty_like(a, dtype=None, order='K', subok=True) Return a new array with the same shape and type as a given array. Parameters: a : array_like The shape and data-type of a define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. New in version 1.6.0. order : {?C?, ?F?, ?A?, or ?K?}, optional Overrides the memory layout of the result. ?C? means C-order, ?F? means F-order, ?A? means ?F? if a is Fortran contiguous, ?C?

recarray.tobytes()

recarray.tobytes(order='C') Construct Python bytes containing the raw data bytes in the array. Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be produced in either ?C? or ?Fortran?, or ?Any? order (the default is ?C?-order). ?Any? order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means ?Fortran? order. New in version 1.9.0. Parameters: order : {?C?, ?F?, None}, optional Order of the data for multidimen