recarray.fill()

recarray.fill(value) Fill the array with a scalar value. Parameters: value : scalar All elements of a will be assigned this value. Examples >>> a = np.array([1, 2]) >>> a.fill(0) >>> a array([0, 0]) >>> a = np.empty(2) >>> a.fill(1) >>> a array([ 1., 1.])

recarray.field()

recarray.field(attr, val=None) [source]

recarray.dumps()

recarray.dumps() Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array. Parameters: None

recarray.dump()

recarray.dump(file) Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load. Parameters: file : str A string naming the dump file.

recarray.dtype

recarray.dtype Data-type of the array?s elements. Parameters: None Returns: d : numpy dtype object See also numpy.dtype Examples >>> x array([[0, 1], [2, 3]]) >>> x.dtype dtype('int32') >>> type(x.dtype) <type 'numpy.dtype'>

recarray.dot()

recarray.dot(b, out=None) Dot product of two arrays. Refer to numpy.dot for full documentation. See also numpy.dot equivalent function Examples >>> a = np.eye(2) >>> b = np.ones((2, 2)) * 2 >>> a.dot(b) array([[ 2., 2.], [ 2., 2.]]) This array method can be conveniently chained: >>> a.dot(b).dot(b) array([[ 8., 8.], [ 8., 8.]])

recarray.diagonal()

recarray.diagonal(offset=0, axis1=0, axis2=1) Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed. Refer to numpy.diagonal for full documentation. See also numpy.diagonal equivalent function

recarray.data

recarray.data Python buffer object pointing to the start of the array?s data.

recarray.cumsum()

recarray.cumsum(axis=None, dtype=None, out=None) Return the cumulative sum of the elements along the given axis. Refer to numpy.cumsum for full documentation. See also numpy.cumsum equivalent function

recarray.cumprod()

recarray.cumprod(axis=None, dtype=None, out=None) Return the cumulative product of the elements along the given axis. Refer to numpy.cumprod for full documentation. See also numpy.cumprod equivalent function