DataFrame.query()

DataFrame.query(expr, inplace=False, **kwargs) [source] Query the columns of a frame with a boolean expression. New in version 0.13. Parameters: expr : string The query string to evaluate. You can refer to variables in the environment by prefixing them with an ?@? character like @a + b. inplace : bool Whether the query should modify the data in place or return a modified copy New in version 0.18.0. kwargs : dict See the documentation for pandas.eval() for complete details on the k

DataFrame.quantile()

DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear') [source] Return values at the given quantile over requested axis, a la numpy.percentile. Parameters: q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1, ?index?, ?columns?} (default 0) 0 or ?index? for row-wise, 1 or ?columns? for column-wise interpolation : {?linear?, ?lower?, ?higher?, ?midpoint?, ?nearest?} New in version 0.18.0. This optional p

DataFrame.product()

DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return the product of the values for the requested axis Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include onl

DataFrame.prod()

DataFrame.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return the product of the values for the requested axis Parameters: axis : {index (0), columns (1)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : boolean, default None Include only f

DataFrame.pow()

DataFrame.pow(other, axis='columns', level=None, fill_value=None) [source] Exponential power of dataframe and other, element-wise (binary operator pow). Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs. Parameters: other : Series, DataFrame, or constant axis : {0, 1, ?index?, ?columns?} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value

DataFrame.pop()

DataFrame.pop(item) [source] Return item and drop from frame. Raise KeyError if not found.

DataFrame.plot.scatter()

DataFrame.plot.scatter(x, y, s=None, c=None, **kwds) [source] Scatter plot New in version 0.17.0. Parameters: x, y : label or position, optional Coordinates for each point. s : scalar or array_like, optional Size of each point. c : label or position, optional Color of each point. **kwds : optional Keyword arguments to pass on to pandas.DataFrame.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them

DataFrame.plot.pie()

DataFrame.plot.pie(y=None, **kwds) [source] Pie chart New in version 0.17.0. Parameters: y : label or position, optional Column to plot. **kwds : optional Keyword arguments to pass on to pandas.DataFrame.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them

DataFrame.plot.line()

DataFrame.plot.line(x=None, y=None, **kwds) [source] Line plot New in version 0.17.0. Parameters: x, y : label or position, optional Coordinates for each point. **kwds : optional Keyword arguments to pass on to pandas.DataFrame.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them

DataFrame.plot.kde()

DataFrame.plot.kde(**kwds) [source] Kernel Density Estimate plot New in version 0.17.0. Parameters: **kwds : optional Keyword arguments to pass on to pandas.DataFrame.plot(). Returns: axes : matplotlib.AxesSubplot or np.array of them