DataFrame.iloc

DataFrame.iloc Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: An integer, e.g. 5. A list or array of integers, e.g. [4, 3, 0]. A slice object with ints, e.g. 1:7. A boolean array. A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above) .iloc will rai

DataFrame.iget_value()

DataFrame.iget_value(i, j) [source] DEPRECATED. Use .iat[i, j] instead

DataFrame.idxmin()

DataFrame.idxmin(axis=0, skipna=True) [source] Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters: axis : {0 or ?index?, 1 or ?columns?}, default 0 0 or ?index? for row-wise, 1 or ?columns? for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: idxmin : Series See also Series.idxmin Notes This method is the DataFrame version of ndarray.argmin.

DataFrame.idxmax()

DataFrame.idxmax(axis=0, skipna=True) [source] Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters: axis : {0 or ?index?, 1 or ?columns?}, default 0 0 or ?index? for row-wise, 1 or ?columns? for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be first index. Returns: idxmax : Series See also Series.idxmax Notes This method is the DataFrame version of ndarray.argma

DataFrame.icol()

DataFrame.icol(i) [source] DEPRECATED. Use .iloc[:, i] instead

DataFrame.iat

DataFrame.iat Fast integer location scalar accessor. Similarly to iloc, iat provides integer based lookups. You can also set using these indexers.

DataFrame.hist()

DataFrame.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds) [source] Draw histogram of the DataFrame?s series using matplotlib / pylab. Parameters: data : DataFrame column : string or sequence If passed, will be used to limit data to a subset of columns by : object, optional If passed, then used to form histograms for separate groups grid : boolean, default

DataFrame.head()

DataFrame.head(n=5) [source] Returns first n rows

DataFrame.gt()

DataFrame.gt(other, axis='columns', level=None) [source] Wrapper for flexible comparison methods gt

DataFrame.groupby()

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs) [source] Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns. Parameters: by : mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be us