DataFrame.rpow()

DataFrame.rpow(other, axis='columns', level=None, fill_value=None) [source] Exponential power of dataframe and other, element-wise (binary operator rpow). Equivalent to other ** dataframe, but with support to substitute a fill_value for missing data in one of the inputs. Parameters: other : Series, DataFrame, or constant axis : {0, 1, ?index?, ?columns?} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this val

Series.imag

Series.imag

CategoricalIndex.ravel()

CategoricalIndex.ravel(order='C') [source] return an ndarray of the flattened values of the underlying data See also numpy.ndarray.ravel

CategoricalIndex.union()

CategoricalIndex.union(other) [source] Form the union of two Index objects and sorts if possible. Parameters: other : Index or array-like Returns: union : Index Examples >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')

Index.astype()

Index.astype(dtype, copy=True) [source] Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters: dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. New

Index.get_duplicates()

Index.get_duplicates() [source]

DatetimeIndex.flags

DatetimeIndex.flags

Panel4D.head()

Panel4D.head(n=5) [source]

CategoricalIndex.equals()

CategoricalIndex.equals(other) [source] Determines if two CategorialIndex objects contain the same elements.

MultiIndex.strides

MultiIndex.strides return the strides of the underlying data