DataFrame.style

DataFrame.style Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. See also pandas.formats.style.Styler

Panel.xs()

Panel.xs(key, axis=1) [source] Return slice of panel along selected axis Parameters: key : object Label axis : {?items?, ?major?, ?minor}, default 1/?major? Returns: y : ndim(self)-1 Notes xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of xs functionality, see MultiIndex Slicers

CategoricalIndex.is_all_dates

CategoricalIndex.is_all_dates = None

CategoricalIndex.itemsize

CategoricalIndex.itemsize return the size of the dtype of the item of the underlying data

MultiIndex.summary()

MultiIndex.summary(name=None) [source]

EWM.std()

EWM.std(bias=False, *args, **kwargs) [source] exponential weighted moving stddev Parameters: bias : boolean, default False Use a standard estimation bias correction Returns: same type as input See also pandas.Series.ewm, pandas.DataFrame.ewm

EWM.var()

EWM.var(bias=False, *args, **kwargs) [source] exponential weighted moving variance Parameters: bias : boolean, default False Use a standard estimation bias correction Returns: same type as input See also pandas.Series.ewm, pandas.DataFrame.ewm

Series.cumprod()

Series.cumprod(axis=None, skipna=True, *args, **kwargs) [source] Return cumulative product over requested axis. Parameters: axis : {index (0)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns: cumprod : scalar

TimedeltaIndex.get_level_values()

TimedeltaIndex.get_level_values(level) [source] Return vector of label values for requested level, equal to the length of the index Parameters: level : int Returns: values : ndarray

Rolling.sum()

Rolling.sum(*args, **kwargs) [source] rolling sum Parameters: how : string, default None (DEPRECATED) Method for down- or re-sampling Returns: same type as input See also pandas.Series.rolling, pandas.DataFrame.rolling