Index.is_monotonic

Index.is_monotonic alias for is_monotonic_increasing (deprecated)

Panel.sort_values()

Panel.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') [source]

DatetimeIndex.quarter

DatetimeIndex.quarter The quarter of the date

Series.head()

Series.head(n=5) [source] Returns first n rows

Computational tools

Statistical Functions Percent Change Series, DataFrame, and Panel all have a method pct_change to compute the percent change over a given number of periods (using fill_method to fill NA/null values before computing the percent change). In [1]: ser = pd.Series(np.random.randn(8)) In [2]: ser.pct_change() Out[2]: 0 NaN 1 -1.602976 2 4.334938 3 -0.247456 4 -2.067345 5 -1.142903 6 -1.688214 7 -9.759729 dtype: float64 In [3]: df = pd.DataFrame(np.random.randn(10, 4)) In

GroupBy.transform()

GroupBy.transform(func, *args, **kwargs) [source]

Series.dt.time

Series.dt.time Returns numpy array of datetime.time. The time part of the Timestamps.

DataFrame.eq()

DataFrame.eq(other, axis='columns', level=None) [source] Wrapper for flexible comparison methods eq

Series.reshape()

Series.reshape(*args, **kwargs) [source] DEPRECATED: calling this method will raise an error in a future release. Please call .values.reshape(...) instead. return an ndarray with the values shape if the specified shape matches exactly the current shape, then return self (for compat) See also numpy.ndarray.reshape

Series.take()

Series.take(indices, axis=0, convert=True, is_copy=False, **kwargs) [source] return Series corresponding to requested indices Parameters: indices : list / array of ints convert : translate negative to positive indices (default) Returns: taken : Series See also numpy.ndarray.take