Panel.rfloordiv()

Panel.rfloordiv(other, axis=0) [source] Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other // panel. Parameters: other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns: Panel See also Panel.floordiv

Panel.resample()

Panel.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None) [source] Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword. Parameters: rule : string the offset string or object representing target conversion axis : int

Panel.replace()

Panel.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None) [source] Replace values given in ?to_replace? with ?value?. Parameters: to_replace : str, regex, list, dict, Series, numeric, or None str or regex: str: string exactly matching to_replace will be replaced with value regex: regexs matching to_replace will be replaced with value list of str, regex, or numeric: First, if to_replace and value are both lists, they must be the same

Panel.rename_axis()

Panel.rename_axis(mapper, axis=0, copy=True, inplace=False) [source] Alter index and / or columns using input function or functions. A scaler or list-like for mapper will alter the Index.name or MultiIndex.names attribute. A function or dict for mapper will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters: mapper : scalar, list-like, dict-like or function, optional axis : int or string, default 0 copy :

Panel.reindex_axis()

Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan) [source] Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters: labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : {0, 1, 2, ?items?, ?major_axis?, ?

Panel.rename()

Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs) [source] Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don?t throw an error. Alternatively, change Series.name with a scalar value (Series only). Parameters: items, major_axis, minor_axis : scalar, list-like, dict-like or function, optional Scalar or list-like will alter the Series.name attribute, and

Panel.reindex_like()

Panel.reindex_like(other, method=None, copy=True, limit=None, tolerance=None) [source] Return an object with matching indices to myself. Parameters: other : Object method : string or None copy : boolean, default True limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between labels of the other object and this object for inexact matches. New in version 0.17.0. Returns: reindexed : same as input Notes Li

Panel.reindex()

Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs) [source] Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters: items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

Panel.rank()

Panel.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False) [source] Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values Parameters: axis: {0 or ?index?, 1 or ?columns?}, default 0 index to direct ranking method : {?average?, ?min?, ?max?, ?first?, ?dense?} average: average rank of group min: lowest rank in group max: highest rank in group first: ranks assigned i

Panel.rdiv()

Panel.rdiv(other, axis=0) [source] Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to other / panel. Parameters: other : DataFrame or Panel axis : {items, major_axis, minor_axis} Axis to broadcast over Returns: Panel See also Panel.truediv