Series.from_array()

classmethod Series.from_array(arr, index=None, name=None, dtype=None, copy=False, fastpath=False) [source]

DatetimeIndex.append()

DatetimeIndex.append(other) [source] Append a collection of Index options together Parameters: other : Index or list/tuple of indices Returns: appended : Index

HDFStore.select()

HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs) [source] Retrieve pandas object stored in file, optionally based on where criteria Parameters: key : object where : list of Term (or convertable) objects, optional start : integer (defaults to None), row number to start selection stop : integer (defaults to None), row number to stop selection columns : a list of columns that if not None, will limit the return c

DatetimeIndex.is_year_start

DatetimeIndex.is_year_start Logical indicating if first day of year (defined by frequency)

MultiIndex.ravel()

MultiIndex.ravel(order='C') [source] return an ndarray of the flattened values of the underlying data See also numpy.ndarray.ravel

Panel4D.swaplevel()

Panel4D.swaplevel(i=-2, j=-1, axis=0) [source] Swap levels i and j in a MultiIndex on a particular axis Parameters: i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns: swapped : type of caller (new object) Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.

DataFrame.get_dtype_counts()

DataFrame.get_dtype_counts() [source] Return the counts of dtypes in this object.

Panel4D.take()

Panel4D.take(indices, axis=0, convert=True, is_copy=True, **kwargs) [source] Analogous to ndarray.take Parameters: indices : list / array of ints axis : int, default 0 convert : translate neg to pos indices (default) is_copy : mark the returned frame as a copy Returns: taken : type of caller

Index.sort_values()

Index.sort_values(return_indexer=False, ascending=True) [source] Return sorted copy of Index

DatetimeIndex.ndim

DatetimeIndex.ndim return the number of dimensions of the underlying data, by definition 1