Panel.slice_shift()

Panel.slice_shift(periods=1, axis=0) [source] Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters: periods : int Number of periods to move, can be positive or negative Returns: shifted : same type as caller Notes While the slice_shift is faster than shift, you may pay for it later during alignment.

MultiIndex.map()

MultiIndex.map(mapper) [source] Apply mapper function to its values. Parameters: mapper : callable Function to be applied. Returns: applied : array

Panel4D.compound()

Panel4D.compound(axis=None, skipna=None, level=None) [source] Return the compound percentage of the values for the requested axis Parameters: axis : {labels (0), items (1), major_axis (2), minor_axis (3)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel numeric_only : boolean, default None

DataFrame.radd()

DataFrame.radd(other, axis='columns', level=None, fill_value=None) [source] Addition of dataframe and other, element-wise (binary operator radd). Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one of the inputs. Parameters: other : Series, DataFrame, or constant axis : {0, 1, ?index?, ?columns?} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If bot

MultiIndex.to_datetime()

MultiIndex.to_datetime(dayfirst=False) [source] DEPRECATED: use pandas.to_datetime() instead. For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

DataFrame.combineAdd()

DataFrame.combineAdd(other) [source] DEPRECATED. Use DataFrame.add(other, fill_value=0.) instead. Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame?s value (which might be NaN as well) Parameters: other : DataFrame Returns: DataFrame See also DataFrame.add

Styler.set_table_attributes()

Styler.set_table_attributes(attributes) [source] Set the table attributes. These are the items that show up in the opening <table> tag in addition to to automatic (by default) id. New in version 0.17.1. Parameters: precision: int Returns: self : Styler

Styler.set_caption()

Styler.set_caption(caption) [source] Se the caption on a Styler New in version 0.17.1. Parameters: caption: str Returns: self : Styler

Panel.asof()

Panel.asof(where, subset=None) [source] The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame) New in version 0.19.0: For DataFrame If there is no good value, NaN is returned. Parameters: where : date or array of dates subset : string or list of strings, default None if not None use these columns for NaN propagation Returns: where is scalar value or NaN if input is Series Series if input is DataFrame wher

Package overview

pandas consists of the following things A set of labeled array data structures, the primary of which are Series and DataFrame Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing An integrated group by engine for aggregating and transforming data sets Date range generation (date_range) and custom date offsets enabling the implementation of customized frequencies Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and