Panel.mad()

Panel.mad(axis=None, skipna=None, level=None) [source] Return the mean absolute deviation of the values for the requested axis Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default None Include on

Panel.lt()

Panel.lt(other, axis=None) [source] Wrapper for comparison method lt

Panel.loc

Panel.loc Purely label-location based indexer for selection by label. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index). A list or array of labels, e.g. ['a', 'b', 'c']. A slice object with labels, e.g. 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!). A boolean array.

Panel.le()

Panel.le(other, axis=None) [source] Wrapper for comparison method le

Panel.last()

Panel.last(offset) [source] Convenience method for subsetting final periods of time series data based on a date offset. Parameters: offset : string, DateOffset, dateutil.relativedelta Returns: subset : type of caller Examples ts.last(?5M?) -> Last 5 months

Panel.kurtosis()

Panel.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return unbiased kurtosis over requested axis using Fisher?s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a par

Panel.kurt()

Panel.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source] Return unbiased kurtosis over requested axis using Fisher?s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1 Parameters: axis : {items (0), major_axis (1), minor_axis (2)} skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particu

Panel.keys()

Panel.keys() [source] Get the ?info axis? (see Indexing for more) This is index for Series, columns for DataFrame and major_axis for Panel.

Panel.join()

Panel.join(other, how='left', lsuffix='', rsuffix='') [source] Join items with other Panel either on major and minor axes column Parameters: other : Panel or list of Panels Index should be similar to one of the columns in this one how : {?left?, ?right?, ?outer?, ?inner?} How to handle indexes of the two objects. Default: ?left? for joining on index, None otherwise * left: use calling frame?s index * right: use input frame?s index * outer: form union of indexes * inner: use intersection

Panel.ix

Panel.ix A primarily label-location based indexer, with integer position fallback. .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes