IV2SLS.from_formula()

statsmodels.sandbox.regression.gmm.IV2SLS.from_formula classmethod IV2SLS.from_formula(formula, data, subset=None, *args, **kwargs) Create a Model from a formula and dataframe. Parameters: formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a pandas.DataFrame args : ex

IV2SLS.fit()

statsmodels.sandbox.regression.gmm.IV2SLS.fit IV2SLS.fit() [source] estimate model using 2SLS IV regression Returns: results : instance of RegressionResults regression result Notes This returns a generic RegressioResults instance as defined for the linear models. Parameter estimates and covariance are correct, but other results haven?t been tested yet, to seee whether they apply without changes.

IRAnalysis.stderr()

statsmodels.tsa.vector_ar.irf.IRAnalysis.stderr IRAnalysis.stderr(orth=False) [source]

IRAnalysis.plot_cum_effects()

statsmodels.tsa.vector_ar.irf.IRAnalysis.plot_cum_effects IRAnalysis.plot_cum_effects(orth=False, impulse=None, response=None, signif=0.05, plot_params=None, subplot_params=None, plot_stderr=True, stderr_type='asym', repl=1000, seed=None) Plot cumulative impulse response functions Parameters: orth : bool, default False Compute orthogonalized impulse responses impulse : string or int variable providing the impulse response : string or int variable affected by the impulse signif : float

IRAnalysis.plot()

statsmodels.tsa.vector_ar.irf.IRAnalysis.plot IRAnalysis.plot(orth=False, impulse=None, response=None, signif=0.05, plot_params=None, subplot_params=None, plot_stderr=True, stderr_type='asym', repl=1000, seed=None, component=None) Plot impulse responses Parameters: orth : bool, default False Compute orthogonalized impulse responses impulse : string or int variable providing the impulse response : string or int variable affected by the impulse signif : float (0 < signif < 1) Sig

IRAnalysis.lr_effect_stderr()

statsmodels.tsa.vector_ar.irf.IRAnalysis.lr_effect_stderr IRAnalysis.lr_effect_stderr(orth=False) [source]

IRAnalysis.lr_effect_cov()

statsmodels.tsa.vector_ar.irf.IRAnalysis.lr_effect_cov IRAnalysis.lr_effect_cov(orth=False) [source]

IRAnalysis.fevd_table()

statsmodels.tsa.vector_ar.irf.IRAnalysis.fevd_table IRAnalysis.fevd_table() [source]

IRAnalysis.err_band_sz3()

statsmodels.tsa.vector_ar.irf.IRAnalysis.err_band_sz3 IRAnalysis.err_band_sz3(orth=False, repl=1000, signif=0.05, seed=None, burn=100, component=None) [source] IRF Sims-Zha error band method 3. Does not assume symmetric error bands around mean. Parameters: orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : int, default N

IRAnalysis.err_band_sz2()

statsmodels.tsa.vector_ar.irf.IRAnalysis.err_band_sz2 IRAnalysis.err_band_sz2(orth=False, repl=1000, signif=0.05, seed=None, burn=100, component=None) [source] IRF Sims-Zha error band method 2. This method Does not assume symmetric error bands around mean. Parameters: orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : in