Transf_gen.mean()

statsmodels.sandbox.distributions.transformed.Transf_gen.mean Transf_gen.mean(*args, **kwds) Mean of the distribution Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: mean : float the mean of the distribution

Transf_gen.logsf()

statsmodels.sandbox.distributions.transformed.Transf_gen.logsf Transf_gen.logsf(x, *args, **kwds) Log of the survival function of the given RV. Returns the log of the ?survival function,? defined as (1 - cdf), evaluated at x. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional

Transf_gen.logpdf()

statsmodels.sandbox.distributions.transformed.Transf_gen.logpdf Transf_gen.logpdf(x, *args, **kwds) Log of the probability density function at x of the given RV. This uses a more numerically accurate calculation if available. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional

Transf_gen.logcdf()

statsmodels.sandbox.distributions.transformed.Transf_gen.logcdf Transf_gen.logcdf(x, *args, **kwds) Log of the cumulative distribution function at x of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: logcdf : array_like

Transf_gen.isf()

statsmodels.sandbox.distributions.transformed.Transf_gen.isf Transf_gen.isf(q, *args, **kwds) Inverse survival function at q of the given RV. Parameters: q : array_like upper tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: x : ndarray or scalar Quantile

Transf_gen.interval()

statsmodels.sandbox.distributions.transformed.Transf_gen.interval Transf_gen.interval(alpha, *args, **kwds) Confidence interval with equal areas around the median. Parameters: alpha : array_like of float Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1]. arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter, D

Transf_gen.freeze()

statsmodels.sandbox.distributions.transformed.Transf_gen.freeze Transf_gen.freeze(*args, **kwds) Freeze the distribution for the given arguments. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include loc and scale. Returns: rv_frozen : rv_frozen instance The frozen distribution.

Transf_gen.fit_loc_scale()

statsmodels.sandbox.distributions.transformed.Transf_gen.fit_loc_scale Transf_gen.fit_loc_scale(data, *args) Estimate loc and scale parameters from data using 1st and 2nd moments. Parameters: data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns: Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data.

Transf_gen.fit()

statsmodels.sandbox.distributions.transformed.Transf_gen.fit Transf_gen.fit(data, *args, **kwds) Return MLEs for shape, location, and scale parameters from data. MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart(data) is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, ..., fn (for shape parameters)

Transf_gen.expect()

statsmodels.sandbox.distributions.transformed.Transf_gen.expect Transf_gen.expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Calculate expected value of a function with respect to the distribution. The expected value of a function f(x) with respect to a distribution dist is defined as: ubound E[x] = Integral(f(x) * dist.pdf(x)) lbound Parameters: func : callable, optional Function for which integral is calculated. Takes only one argume