ACSkewT_gen.freeze()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.freeze ACSkewT_gen.freeze(*args, **kwds) Freeze the distribution for the given arguments. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include loc and scale. Returns: rv_frozen : rv_frozen instance The frozen distribution.

ACSkewT_gen.interval()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.interval ACSkewT_gen.interval(alpha, *args, **kwds) Confidence interval with equal areas around the median. Parameters: alpha : array_like of float Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1]. arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter, Defa

ACSkewT_gen.expect()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.expect ACSkewT_gen.expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Calculate expected value of a function with respect to the distribution. The expected value of a function f(x) with respect to a distribution dist is defined as: ubound E[x] = Integral(f(x) * dist.pdf(x)) lbound Parameters: func : callable, optional Function for which integral is calculated. Takes only one argument.

ACSkewT_gen.fit()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.fit ACSkewT_gen.fit(data, *args, **kwds) Return MLEs for shape, location, and scale parameters from data. MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart(data) is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, ..., fn (for shape parameters) an

ACSkewT_gen.fit_loc_scale()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.fit_loc_scale ACSkewT_gen.fit_loc_scale(data, *args) Estimate loc and scale parameters from data using 1st and 2nd moments. Parameters: data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns: Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data.

ACSkewT_gen.est_loc_scale()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.est_loc_scale ACSkewT_gen.est_loc_scale(*args, **kwds) est_loc_scale is deprecated! This function is deprecated, use self.fit_loc_scale(data) instead.

ACSkewT_gen.entropy()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.entropy ACSkewT_gen.entropy(*args, **kwds) Differential entropy of the RV. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1).

ACSkewT_gen.cdf()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.cdf ACSkewT_gen.cdf(x, *args, **kwds) Cumulative distribution function of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: cdf : ndarray Cumulative distribution functi