NonlinearIVGMM.gmmobjective_cu()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.gmmobjective_cu NonlinearIVGMM.gmmobjective_cu(params, weights_method='cov', wargs=()) objective function for continuously updating GMM minimization Parameters: params : array parameter values at which objective is evaluated Returns: jval : float value of objective function

NonlinearIVGMM.gmmobjective()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.gmmobjective NonlinearIVGMM.gmmobjective(params, weights) objective function for GMM minimization Parameters: params : array parameter values at which objective is evaluated weights : array weighting matrix Returns: jval : float value of objective function

NonlinearIVGMM.get_error()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.get_error NonlinearIVGMM.get_error(params)

NonlinearIVGMM.from_formula()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.from_formula classmethod NonlinearIVGMM.from_formula(formula, data, subset=None, *args, **kwargs) Create a Model from a formula and dataframe. Parameters: formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a pandas.Data

NonlinearIVGMM.fitstart()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.fitstart NonlinearIVGMM.fitstart() [source]

NonlinearIVGMM.fititer()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.fititer NonlinearIVGMM.fititer(start, maxiter=2, start_invweights=None, weights_method='cov', wargs=(), optim_method='bfgs', optim_args=None) iterative estimation with updating of optimal weighting matrix stopping criteria are maxiter or change in parameter estimate less than self.epsilon_iter, with default 1e-6. Parameters: start : array starting value for parameters maxiter : int maximum number of iterations start_weights : array (nmom

NonlinearIVGMM.fitgmm_cu()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.fitgmm_cu NonlinearIVGMM.fitgmm_cu(start, optim_method='bfgs', optim_args=None) estimate parameters using continuously updating GMM Parameters: start : array_like starting values for minimization Returns: paramest : array estimated parameters Notes todo: add fixed parameter option, not here ??? uses scipy.optimize.fmin

NonlinearIVGMM.fitgmm()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.fitgmm NonlinearIVGMM.fitgmm(start, weights=None, optim_method='bfgs', optim_args=None) estimate parameters using GMM Parameters: start : array_like starting values for minimization weights : array weighting matrix for moment conditions. If weights is None, then the identity matrix is used Returns: paramest : array estimated parameters Notes todo: add fixed parameter option, not here ??? uses scipy.optimize.fmin

NonlinearIVGMM.fit()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.fit NonlinearIVGMM.fit(start_params=None, maxiter=10, inv_weights=None, weights_method='cov', wargs=(), has_optimal_weights=True, optim_method='bfgs', optim_args=None) Estimate parameters using GMM and return GMMResults TODO: weight and covariance arguments still need to be made consistent with similar options in other models, see RegressionResult.get_robustcov_results Parameters: start_params : array (optional) starting value for parameter

NonlinearIVGMM.calc_weightmatrix()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.calc_weightmatrix NonlinearIVGMM.calc_weightmatrix(moms, weights_method='cov', wargs=(), params=None) calculate omega or the weighting matrix Parameters: moms : array, (nobs, nmoms) moment conditions for all observations evaluated at a parameter value weights_method : string ?cov? If method=?cov? is cov then the matrix is calculated as simple covariance of the moment conditions. see fit method for available aoptions for the weight and cov