IVGMMResults.wald_test()

statsmodels.sandbox.regression.gmm.IVGMMResults.wald_test IVGMMResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tup

IVGMMResults.t_test()

statsmodels.sandbox.regression.gmm.IVGMMResults.t_test IVGMMResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None) Compute a t-test for a each linear hypothesis of the form Rb = q Parameters: r_matrix : array-like, str, tuple array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tuple of a

IVGMMResults.summary()

statsmodels.sandbox.regression.gmm.IVGMMResults.summary IVGMMResults.summary(yname=None, xname=None, title=None, alpha=0.05) Summarize the Regression Results Parameters: yname : string, optional Default is y xname : list of strings, optional Default is var_## for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns: smry : Summary in

IVGMMResults.save()

statsmodels.sandbox.regression.gmm.IVGMMResults.save IVGMMResults.save(fname, remove_data=False) save a pickle of this instance Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. remove_data : bool If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. Notes If remove_

IVGMMResults.remove_data()

statsmodels.sandbox.regression.gmm.IVGMMResults.remove_data IVGMMResults.remove_data() remove data arrays, all nobs arrays from result and model This reduces the size of the instance, so it can be pickled with less memory. Currently tested for use with predict from an unpickled results and model instance. Warning Since data and some intermediate results have been removed calculating new statistics that require them will raise exceptions. The exception will occur the first time an attribute

IVGMMResults.predict()

statsmodels.sandbox.regression.gmm.IVGMMResults.predict IVGMMResults.predict(exog=None, transform=True, *args, **kwargs) Call self.model.predict with self.params as the first argument. Parameters: exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data str

IVGMMResults.normalized_cov_params()

statsmodels.sandbox.regression.gmm.IVGMMResults.normalized_cov_params IVGMMResults.normalized_cov_params()

IVGMMResults.load()

statsmodels.sandbox.regression.gmm.IVGMMResults.load classmethod IVGMMResults.load(fname) load a pickle, (class method) Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns: unpickled instance :

IVGMMResults.jtest()

statsmodels.sandbox.regression.gmm.IVGMMResults.jtest IVGMMResults.jtest() overidentification test I guess this is missing a division by nobs, what?s the normalization in jval ?

IVGMMResults.initialize()

statsmodels.sandbox.regression.gmm.IVGMMResults.initialize IVGMMResults.initialize(model, params, **kwd)