autolevel-percentile

autolevel_percentile skimage.filters.rank.autolevel_percentile(image, selem, out=None, mask=None, shift_x=False, shift_y=False, p0=0, p1=1) [source] Return greyscale local autolevel of an image. This filter locally stretches the histogram of greyvalues to cover the entire range of values from “white” to “black”. Only greyvalues between percentiles [p0, p1] are considered in the filter. Parameters: image : 2-D array (uint8, uint16) Input image. selem : 2-D array The neighborhood expressed

deprecated

deprecated class skimage.data.deprecated(alt_func=None, behavior='warn') [source] Bases: object Decorator to mark deprecated functions with warning. Adapted from <http://wiki.python.org/moin/PythonDecoratorLibrary>. Parameters: alt_func : str If given, tell user what function to use instead. behavior : {‘warn’, ‘raise’} Behavior during call to deprecated function: ‘warn’ = warn user that function is deprecated; ‘raise’ = raise error. __init__(alt_func=None, behavior='warn') [sou

imread

imread skimage.external.tifffile.imread(files, **kwargs) [source] Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters: files : str or list File name, glob pattern, or list of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages

description

Module: novice

rgb2gray

rgb2gray skimage.color.rgb2gray(rgb) [source] Compute luminance of an RGB image. Parameters: rgb : array_like The image in RGB format, in a 3-D array of shape (.., .., 3), or in RGBA format with shape (.., .., 4). Returns: out : ndarray The luminance image, a 2-D array. Raises: ValueError If rgb2gray is not a 3-D array of shape (.., .., 3) or (.., .., 4). Notes The weights used in this conversion are calibrated for contemporary CRT phosphors: Y = 0.2125 R + 0.7154 G + 0.0721 B I

hubble-deep-field

hubble_deep_field skimage.data.hubble_deep_field() [source] Hubble eXtreme Deep Field. This photograph contains the Hubble Telescope’s farthest ever view of the universe. It can be useful as an example for multi-scale detection. Notes This image was downloaded from HubbleSite. The image was captured by NASA and may be freely used in the public domain.

iradon

iradon skimage.transform.iradon(radon_image, theta=None, output_size=None, filter='ramp', interpolation='linear', circle=False) [source] Inverse radon transform. Reconstruct an image from the radon transform, using the filtered back projection algorithm. Parameters: radon_image : array_like, dtype=float Image containing radon transform (sinogram). Each column of the image corresponds to a projection along a different angle. The tomography rotation axis should lie at the pixel index radon_i

circlemodel

CircleModel class skimage.measure.CircleModel [source] Bases: skimage.measure.fit.BaseModel Total least squares estimator for 2D circles. The functional model of the circle is: r**2 = (x - xc)**2 + (y - yc)**2 This estimator minimizes the squared distances from all points to the circle: min{ sum((r - sqrt((x_i - xc)**2 + (y_i - yc)**2))**2) } A minimum number of 3 points is required to solve for the parameters. Attributes params (tuple) Circle model parameters in the following order xc, yc

api-reference

API Reference skimageSubpackages Utility Functions dtype_limits img_as_bool img_as_float img_as_int img_as_ubyte img_as_uint test Module: colorcombine_stains convert_colorspace deltaE_cie76 deltaE_ciede2000 deltaE_ciede94 deltaE_cmc gray2rgb guess_spatial_dimensions hed2rgb hsv2rgb lab2lch lab2rgb lab2xyz label2rgb lch2lab luv2rgb luv2xyz rgb2gray rgb2grey rgb2hed rgb2hsv rgb2lab rgb2luv rgb2rgbcie rgb2xyz rgbcie2rgb separate_stains xyz2lab xyz2luv xyz2rgb Module: dataastronaut binary_blob

sum-percentile

sum_percentile skimage.filters.rank.sum_percentile(image, selem, out=None, mask=None, shift_x=False, shift_y=False, p0=0, p1=1) [source] Return the local sum of pixels. Only greyvalues between percentiles [p0, p1] are considered in the filter. Note that the sum may overflow depending on the data type of the input array. Parameters: image : 2-D array (uint8, uint16) Input image. selem : 2-D array The neighborhood expressed as a 2-D array of 1’s and 0’s. out : 2-D array (same dtype as inp