numpy.fromfile()
  • References/Python/NumPy/Routines/Array creation routines

numpy.fromfile(file, dtype=float, count=-1, sep='') Construct an array from data in a text or binary file. A highly efficient

2025-01-10 15:47:30
numpy.polynomial.laguerre.lagzero
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

numpy.polynomial.laguerre.lagzero = array([0])

2025-01-10 15:47:30
matrix.var()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.var(axis=None, dtype=None, out=None, ddof=0)

2025-01-10 15:47:30
recarray.mean()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.mean(axis=None, dtype=None, out=None, keepdims=False) Returns the average of the array elements along given axis

2025-01-10 15:47:30
numpy.arctanh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.arctanh(x[, out]) = Inverse hyperbolic tangent element-wise.

2025-01-10 15:47:30
generic.itemsize
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.itemsize length of one element in bytes

2025-01-10 15:47:30
numpy.arange()
  • References/Python/NumPy/Routines/Array creation routines

numpy.arange([start, ]stop, [step, ]dtype=None) Return evenly spaced values within a given interval. Values are generated

2025-01-10 15:47:30
numpy.random.beta()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case

2025-01-10 15:47:30
recarray.trace()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) Return the sum along diagonals of the array. Refer

2025-01-10 15:47:30
numpy.polynomial.hermite_e.hermedomain
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermedomain = array([-1, 1])

2025-01-10 15:47:30