MaskedArray.dtype
  • References/Python/NumPy/Array objects/Masked arrays/Constants of the numpy.ma module

MaskedArray.dtype Data-type of the array?s elements.

2025-01-10 15:47:30
MaskedArray.round()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.round(decimals=0, out=None)

2025-01-10 15:47:30
numpy.ma.squeeze()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.squeeze(a, axis=None)

2025-01-10 15:47:30
numpy.polynomial.hermite.hermone
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

numpy.polynomial.hermite.hermone = array([1])

2025-01-10 15:47:30
numpy.polynomial.hermite_e.hermepow()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermepow(c, pow, maxpower=16)

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__copy__([order]) Return a copy of the array.

2025-01-10 15:47:30
numpy.polynomial.laguerre.lagpow()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

numpy.polynomial.laguerre.lagpow(c, pow, maxpower=16)

2025-01-10 15:47:30
ndarray.std()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False) Returns the standard deviation of the array elements along

2025-01-10 15:47:30
numpy.i0()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.i0(x)

2025-01-10 15:47:30
numpy.polynomial.hermite_e.hermecompanion()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermecompanion(c)

2025-01-10 15:47:30