numpy.pad()
  • References/Python/NumPy/Routines/Padding Arrays

numpy.pad(array, pad_width, mode, **kwargs)

2025-01-10 15:47:30
MaskedArray.astype()
  • References/Python/NumPy/Array objects/Masked arrays/Constants of the numpy.ma module

MaskedArray.astype(newtype)

2025-01-10 15:47:30
MaskedArray.
  • References/Python/NumPy/Array objects/Masked arrays/Constants of the numpy.ma module

MaskedArray.__irshift__ x.__irshift__(y) <==> x>>=y

2025-01-10 15:47:30
dtype.hasobject
  • References/Python/NumPy/Routines/Data type routines/numpy.dtype

dtype.hasobject Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes

2025-01-10 15:47:30
generic.astype()
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.astype() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and

2025-01-10 15:47:30
matrix.min()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.min(axis=None, out=None)

2025-01-10 15:47:30
numpy.arange()
  • References/Python/NumPy/Routines/Array creation routines

numpy.arange([start, ]stop, [step, ]dtype=None) Return evenly spaced values within a given interval. Values are generated

2025-01-10 15:47:30
numpy.polynomial.polynomial.polyvander2d()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

numpy.polynomial.polynomial.polyvander2d(x, y, deg)

2025-01-10 15:47:30
numpy.subtract()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.subtract(x1, x2[, out]) = Subtract arguments, element-wise.

2025-01-10 15:47:30
Polynomial.degree()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

Polynomial.degree()

2025-01-10 15:47:30