numpy.polynomial.legendre.legfromroots()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.legfromroots(roots)

2025-01-10 15:47:30
numpy.random.RandomState
  • References/Python/NumPy/Routines/Random sampling

class numpy.random.RandomState Container for the Mersenne Twister pseudo-random number generator.

2025-01-10 15:47:30
numpy.random.standard_cauchy()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also

2025-01-10 15:47:30
RandomState.exponential()
  • References/Python/NumPy/Routines/Random sampling

RandomState.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its

2025-01-10 15:47:30
MaskedArray.size
  • References/Python/NumPy/Array objects/Masked arrays/Constants of the numpy.ma module

MaskedArray.size Number of elements in the array. Equivalent to np.prod(a.shape), i.e., the

2025-01-10 15:47:30
numpy.histogramdd()
  • References/Python/NumPy/Routines/Statistics

numpy.histogramdd(sample, bins=10, range=None, normed=False, weights=None)

2025-01-10 15:47:30
HermiteE.fromroots()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

classmethod HermiteE.fromroots(roots, domain=[], window=None)

2025-01-10 15:47:30
numpy.exp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.exp(x[, out]) = Calculate the exponential of all elements in the input array.

2025-01-10 15:47:30
numpy.cos()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cos(x[, out]) = Cosine element-wise.

2025-01-10 15:47:30
generic.tostring()
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.tostring() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from

2025-01-10 15:47:30