ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__div__ x.__div__(y) <==> x/y

2025-01-10 15:47:30
numpy.polynomial.laguerre.lagsub()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

numpy.polynomial.laguerre.lagsub(c1, c2)

2025-01-10 15:47:30
numpy.matlib.ones()
  • References/Python/NumPy/Routines/Matrix library

numpy.matlib.ones(shape, dtype=None, order='C')

2025-01-10 15:47:30
numpy.polynomial.hermite.hermcompanion()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

numpy.polynomial.hermite.hermcompanion(c)

2025-01-10 15:47:30
recarray.cumprod()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.cumprod(axis=None, dtype=None, out=None) Return the cumulative product of the elements along the given axis.

2025-01-10 15:47:30
Polynomial.identity()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

classmethod Polynomial.identity(domain=None, window=None)

2025-01-10 15:47:30
MaskedArray.prod()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.prod(axis=None, dtype=None, out=None)

2025-01-10 15:47:30
MaskedArray.transpose()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.transpose(*axes)

2025-01-10 15:47:30
numpy.ma.argmin()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.argmin(a, axis=None, fill_value=None)

2025-01-10 15:47:30
record.conj()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.record

record.conj()

2025-01-10 15:47:30