recarray.imag
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.imag The imaginary part of the array. Examples

2025-01-10 15:47:30
record.argmin()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.record

record.argmin() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and

2025-01-10 15:47:30
record.cumsum()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.record

record.cumsum() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and

2025-01-10 15:47:30
recarray.itemset()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.itemset(*args) Insert scalar into an array (scalar is cast to array?s dtype, if possible) There must be

2025-01-10 15:47:30
MaskedArray.
  • References/Python/NumPy/Array objects/Masked arrays/Constants of the numpy.ma module

MaskedArray.__rrshift__ x.__rrshift__(y) <==> y>>x

2025-01-10 15:47:30
MaskedArray.
  • References/Python/NumPy/Array objects/Masked arrays/Constants of the numpy.ma module

MaskedArray.__rmul__(other)

2025-01-10 15:47:30
matrix.imag
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.imag The imaginary part of the array. Examples >>>

2025-01-10 15:47:30
matrix.dumps()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.dumps() Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an

2025-01-10 15:47:30
The numpy.ma module
  • References/Python/NumPy/Array objects/Masked arrays

Rationale Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-alike replacement for numpy

2025-01-10 15:47:30
Scalars
  • References/Python/NumPy/Array objects

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.). This can be convenient in applications that don?t need to be

2025-01-10 15:47:30