ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__rshift__ x.__rshift__(y) <==> x>>y

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__sub__ x.__sub__(y) <==> x-y

2025-01-10 15:47:30
ndarray.nbytes
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.nbytes Total bytes consumed by the elements of the array. Notes Does not include

2025-01-10 15:47:30
generic.conjugate()
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.conjugate() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from

2025-01-10 15:47:30
generic.round()
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.round() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and

2025-01-10 15:47:30
recarray.diagonal()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.diagonal(offset=0, axis1=0, axis2=1) Return specified diagonals. In NumPy 1.9 the returned array is a read-only

2025-01-10 15:47:30
numpy.chararray
  • References/Python/NumPy/Array objects/Standard array subclasses

class numpy.chararray

2025-01-10 15:47:30
ndarray.cumprod()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.cumprod(axis=None, dtype=None, out=None) Return the cumulative product of the elements along the given axis.

2025-01-10 15:47:30
record.itemsize
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.record

record.itemsize length of one element in bytes

2025-01-10 15:47:30
matrix.mean()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.matrix

matrix.mean(axis=None, dtype=None, out=None)

2025-01-10 15:47:30