ndarray.max()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.max(axis=None, out=None) Return the maximum along a given axis. Refer to

2025-01-10 15:47:30
ndarray.newbyteorder()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.newbyteorder(new_order='S') Return the array with the same data viewed with a different byte order. Equivalent

2025-01-10 15:47:30
ndarray.sum()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.sum(axis=None, dtype=None, out=None, keepdims=False) Return the sum of the array elements over the given axis.

2025-01-10 15:47:30
ndarray.cumsum()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.cumsum(axis=None, dtype=None, out=None) Return the cumulative sum of the elements along the given axis. Refer

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__long__() <==> long(x)

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__reduce__() For pickling.

2025-01-10 15:47:30
ndarray.partition()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.partition(kth, axis=-1, kind='introselect', order=None) Rearranges the elements in the array in such a way that

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__getitem__ x.__getitem__(y) <==> x[y]

2025-01-10 15:47:30
ndarray.argsort()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.argsort(axis=-1, kind='quicksort', order=None) Returns the indices that would sort this array. Refer to

2025-01-10 15:47:30
ndarray.prod()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.prod(axis=None, dtype=None, out=None, keepdims=False) Return the product of the array elements over the given axis

2025-01-10 15:47:30