ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__setitem__ x.__setitem__(i, y) <==> x[i]=y

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__floordiv__ x.__floordiv__(y) <==> x//y

2025-01-10 15:47:30
ndarray.var()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False) Returns the variance of the array elements, along given

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__iadd__ x.__iadd__(y) <==> x+=y

2025-01-10 15:47:30
ndarray.diagonal()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.diagonal(offset=0, axis1=0, axis2=1) Return specified diagonals. In NumPy 1.9 the returned array is a read-only

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__float__() <==> float(x)

2025-01-10 15:47:30
ndarray.std()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False) Returns the standard deviation of the array elements along

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__setslice__ x.__setslice__(i, j, y) <==> x[i:j]=y Use of negative indices is not supported

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__rshift__ x.__rshift__(y) <==> x>>y

2025-01-10 15:47:30
ndarray.cumprod()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.cumprod(axis=None, dtype=None, out=None) Return the cumulative product of the elements along the given axis.

2025-01-10 15:47:30