ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__or__ x.__or__(y) <==> x|y

2025-01-10 15:47:30
ndarray.transpose()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.transpose(*axes) Returns a view of the array with axes transposed. For a 1-D array, this has no effect

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__invert__ x.__invert__() <==> ~x

2025-01-10 15:47:30
ndarray.put()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.put(indices, values, mode='raise') Set a.flat[n] = values[n] for all n in indices. Refer

2025-01-10 15:47:30
ndarray.view()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.view(dtype=None, type=None) New view of array with the same data.

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__irshift__ x.__irshift__(y) <==> x>>=y

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__truediv__ x.__truediv__(y) <==> x/y

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__ipow__ x.__ipow__(y) <==> x**=y

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__ixor__ x.__ixor__(y) <==> x^=y

2025-01-10 15:47:30
ndarray.
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.__repr__() <==> repr(x)

2025-01-10 15:47:30