gaussian_process.GaussianProcessRegressor()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.GaussianProcessRegressor(kernel=None, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0

2025-01-10 15:47:30
gaussian_process.kernels.Hyperparameter
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Hyperparameter

2025-01-10 15:47:30
gaussian_process.kernels.RationalQuadratic()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.RationalQuadratic(length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-05

2025-01-10 15:47:30
gaussian_process.kernels.ConstantKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0))

2025-01-10 15:47:30
gaussian_process.kernels.CompoundKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.CompoundKernel(kernels)

2025-01-10 15:47:30
gaussian_process.kernels.RBF()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0))

2025-01-10 15:47:30
gaussian_process.kernels.WhiteKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-05, 100000.0))

2025-01-10 15:47:30